Keyword Extraction Task¶
openaivec.task.nlp.keyword_extraction ¶
Keyword extraction task for OpenAI API.
This module provides a predefined task for keyword extraction that identifies important keywords and phrases from text using OpenAI's language models.
Example
Basic usage with BatchResponses:
from openai import OpenAI
from openaivec.responses import BatchResponses
from openaivec.task import nlp
client = OpenAI()
analyzer = BatchResponses.of_task(
client=client,
model_name="gpt-4o-mini",
task=nlp.KEYWORD_EXTRACTION
)
texts = ["Machine learning is transforming the technology industry.",
"Climate change affects global weather patterns."]
analyses = analyzer.parse(texts)
for analysis in analyses:
print(f"Keywords: {analysis.keywords}")
print(f"Key phrases: {analysis.keyphrases}")
print(f"Topics: {analysis.topics}")
With pandas integration:
import pandas as pd
from openaivec import pandas_ext # Required for .ai accessor
from openaivec.task import nlp
df = pd.DataFrame({"text": ["Machine learning is transforming the technology industry.",
"Climate change affects global weather patterns."]})
df["keywords"] = df["text"].ai.task(nlp.KEYWORD_EXTRACTION)
# Extract keyword components
extracted_df = df.ai.extract("keywords")
print(extracted_df[["text", "keywords_keywords", "keywords_topics", "keywords_summary"]])
Attributes:
Name | Type | Description |
---|---|---|
KEYWORD_EXTRACTION |
PreparedTask
|
A prepared task instance configured for keyword extraction with temperature=0.0 and top_p=1.0 for deterministic output. |