Skip to content

openaivec.pandas_ext

Pandas Series / DataFrame extension for OpenAI.

Setup

from openai import OpenAI
from openaivec import pandas_ext

# Set up the OpenAI client to use with pandas_ext
# Option 1: Use an existing client instance
# pandas_ext.use(OpenAI())

# Option 2: Use environment variables (OPENAI_API_KEY or Azure variables)
# (No explicit setup needed if variables are set)

# Option 3: Provide API key directly
pandas_ext.use_openai("YOUR_API_KEY")

# Option 4: Use Azure OpenAI credentials
# pandas_ext.use_azure_openai(
#     api_key="YOUR_AZURE_KEY",
#     endpoint="YOUR_AZURE_ENDPOINT",
#     api_version="YOUR_API_VERSION"
# )

# Set up the model_name for responses and embeddings (optional, defaults shown)
pandas_ext.responses_model("gpt-4o-mini")
pandas_ext.embeddings_model("text-embedding-3-small")

This module provides .ai and .aio accessors for pandas Series and DataFrames to easily interact with OpenAI APIs for tasks like generating responses or embeddings.

AsyncOpenAIVecDataFrameAccessor

pandas DataFrame accessor (.aio) that adds OpenAI helpers.

Source code in src/openaivec/pandas_ext.py
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
@pd.api.extensions.register_dataframe_accessor("aio")
class AsyncOpenAIVecDataFrameAccessor:
    """pandas DataFrame accessor (``.aio``) that adds OpenAI helpers."""

    def __init__(self, df_obj: pd.DataFrame):
        self._obj = df_obj

    async def responses(
        self,
        instructions: str,
        response_format: Type[T] = str,
        batch_size: int = 128,
        temperature: float = 0.0,
        top_p: float = 1.0,
        max_concurrency: int = 8,
    ) -> pd.Series:
        """Generate a response for each row after serialising it to JSON (asynchronously).

        Example:
            ```python
            df = pd.DataFrame([
                {\"name\": \"cat\", \"legs\": 4},
                {\"name\": \"dog\", \"legs\": 4},
                {\"name\": \"elephant\", \"legs\": 4},
            ])
            # Must be awaited
            results = await df.aio.responses(\"what is the animal\'s name?\")
            ```
            This method returns a Series of strings, each containing the
            assistant's response to the corresponding input.
            Each row is serialised to JSON before being sent to the assistant.
            The model used is set by the `responses_model` function.
            The default model is `gpt-4o-mini`.

        Args:
            instructions (str): System prompt for the assistant.
            response_format (Type[T], optional): Desired Python type of the
                responses. Defaults to ``str``.
            batch_size (int, optional): Number of requests sent in one batch.
                Defaults to ``128``.
            temperature (float, optional): Sampling temperature. Defaults to ``0.0``.
            top_p (float, optional): Nucleus sampling parameter. Defaults to ``1.0``.
            max_concurrency (int, optional): Maximum number of concurrent
                requests. Defaults to ``8``.

        Returns:
            pandas.Series: Responses aligned with the DataFrame’s original index.

        Note:
            This is an asynchronous method and must be awaited.
        """
        series_of_json = self._obj.pipe(
            lambda df: (
                pd.Series(df.to_dict(orient="records"), index=df.index, name="record").map(
                    lambda x: json.dumps(x, ensure_ascii=False)
                )
            )
        )
        # Await the call to the async Series method using .aio
        return await series_of_json.aio.responses(
            instructions=instructions,
            response_format=response_format,
            batch_size=batch_size,
            temperature=temperature,
            top_p=top_p,
            max_concurrency=max_concurrency,
        )

    async def pipe(self, func: Callable[[pd.DataFrame], Awaitable[T] | T]) -> T:
        """
        Apply a function to the DataFrame, supporting both synchronous and asynchronous functions.

        This method allows chaining operations on the DataFrame, similar to pandas' `pipe` method,
        but with support for asynchronous functions.

        Args:
            func (Callable[[pd.DataFrame], Awaitable[T] | T]): A function that takes a DataFrame
                as input and returns either a result or an awaitable result.

        Returns:
            T: The result of applying the function, either directly or after awaiting it.

        Note:
            This is an asynchronous method and must be awaited if the function returns an awaitable.
        """
        result = func(self._obj)
        if inspect.isawaitable(result):
            return await result
        else:
            return result

    async def assign(self, **kwargs):
        """Asynchronously assign new columns to the DataFrame, evaluating sequentially.

        This method extends pandas' `assign` method by supporting asynchronous
        functions as column values and evaluating assignments sequentially, allowing
        later assignments to refer to columns created earlier in the same call.

        For each key-value pair in `kwargs`:
        - If the value is a callable, it is invoked with the current state of the DataFrame
          (including columns created in previous steps of this `assign` call).
          If the result is awaitable, it is awaited; otherwise, it is used directly.
        - If the value is not callable, it is assigned directly to the new column.

        Example:
            ```python
            async def compute_column(df):
                # Simulate an asynchronous computation
                await asyncio.sleep(1)
                return df["existing_column"] * 2

            async def use_new_column(df):
                # Access the column created in the previous step
                await asyncio.sleep(1)
                return df["new_column"] + 5


            df = pd.DataFrame({"existing_column": [1, 2, 3]})
            # Must be awaited
            df = await df.aio.assign(
                new_column=compute_column,
                another_column=use_new_column
            )
            ```

        Args:
            **kwargs: Column names as keys and either static values or callables
                (synchronous or asynchronous) as values.

        Returns:
            pandas.DataFrame: A new DataFrame with the assigned columns.

        Note:
            This is an asynchronous method and must be awaited.
        """
        df_current = self._obj.copy()
        for key, value in kwargs.items():
            if callable(value):
                result = value(df_current)
                if inspect.isawaitable(result):
                    column_data = await result
                else:
                    column_data = result
            else:
                column_data = value

            df_current[key] = column_data

        return df_current

assign(**kwargs) async

Asynchronously assign new columns to the DataFrame, evaluating sequentially.

This method extends pandas' assign method by supporting asynchronous functions as column values and evaluating assignments sequentially, allowing later assignments to refer to columns created earlier in the same call.

For each key-value pair in kwargs: - If the value is a callable, it is invoked with the current state of the DataFrame (including columns created in previous steps of this assign call). If the result is awaitable, it is awaited; otherwise, it is used directly. - If the value is not callable, it is assigned directly to the new column.

Example
async def compute_column(df):
    # Simulate an asynchronous computation
    await asyncio.sleep(1)
    return df["existing_column"] * 2

async def use_new_column(df):
    # Access the column created in the previous step
    await asyncio.sleep(1)
    return df["new_column"] + 5


df = pd.DataFrame({"existing_column": [1, 2, 3]})
# Must be awaited
df = await df.aio.assign(
    new_column=compute_column,
    another_column=use_new_column
)

Parameters:

Name Type Description Default
**kwargs

Column names as keys and either static values or callables (synchronous or asynchronous) as values.

{}

Returns:

Type Description

pandas.DataFrame: A new DataFrame with the assigned columns.

Note

This is an asynchronous method and must be awaited.

Source code in src/openaivec/pandas_ext.py
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
async def assign(self, **kwargs):
    """Asynchronously assign new columns to the DataFrame, evaluating sequentially.

    This method extends pandas' `assign` method by supporting asynchronous
    functions as column values and evaluating assignments sequentially, allowing
    later assignments to refer to columns created earlier in the same call.

    For each key-value pair in `kwargs`:
    - If the value is a callable, it is invoked with the current state of the DataFrame
      (including columns created in previous steps of this `assign` call).
      If the result is awaitable, it is awaited; otherwise, it is used directly.
    - If the value is not callable, it is assigned directly to the new column.

    Example:
        ```python
        async def compute_column(df):
            # Simulate an asynchronous computation
            await asyncio.sleep(1)
            return df["existing_column"] * 2

        async def use_new_column(df):
            # Access the column created in the previous step
            await asyncio.sleep(1)
            return df["new_column"] + 5


        df = pd.DataFrame({"existing_column": [1, 2, 3]})
        # Must be awaited
        df = await df.aio.assign(
            new_column=compute_column,
            another_column=use_new_column
        )
        ```

    Args:
        **kwargs: Column names as keys and either static values or callables
            (synchronous or asynchronous) as values.

    Returns:
        pandas.DataFrame: A new DataFrame with the assigned columns.

    Note:
        This is an asynchronous method and must be awaited.
    """
    df_current = self._obj.copy()
    for key, value in kwargs.items():
        if callable(value):
            result = value(df_current)
            if inspect.isawaitable(result):
                column_data = await result
            else:
                column_data = result
        else:
            column_data = value

        df_current[key] = column_data

    return df_current

pipe(func) async

Apply a function to the DataFrame, supporting both synchronous and asynchronous functions.

This method allows chaining operations on the DataFrame, similar to pandas' pipe method, but with support for asynchronous functions.

Parameters:

Name Type Description Default
func Callable[[DataFrame], Awaitable[T] | T]

A function that takes a DataFrame as input and returns either a result or an awaitable result.

required

Returns:

Name Type Description
T T

The result of applying the function, either directly or after awaiting it.

Note

This is an asynchronous method and must be awaited if the function returns an awaitable.

Source code in src/openaivec/pandas_ext.py
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
async def pipe(self, func: Callable[[pd.DataFrame], Awaitable[T] | T]) -> T:
    """
    Apply a function to the DataFrame, supporting both synchronous and asynchronous functions.

    This method allows chaining operations on the DataFrame, similar to pandas' `pipe` method,
    but with support for asynchronous functions.

    Args:
        func (Callable[[pd.DataFrame], Awaitable[T] | T]): A function that takes a DataFrame
            as input and returns either a result or an awaitable result.

    Returns:
        T: The result of applying the function, either directly or after awaiting it.

    Note:
        This is an asynchronous method and must be awaited if the function returns an awaitable.
    """
    result = func(self._obj)
    if inspect.isawaitable(result):
        return await result
    else:
        return result

responses(instructions, response_format=str, batch_size=128, temperature=0.0, top_p=1.0, max_concurrency=8) async

Generate a response for each row after serialising it to JSON (asynchronously).

Example

df = pd.DataFrame([
    {"name": "cat", "legs": 4},
    {"name": "dog", "legs": 4},
    {"name": "elephant", "legs": 4},
])
# Must be awaited
results = await df.aio.responses("what is the animal's name?")
This method returns a Series of strings, each containing the assistant's response to the corresponding input. Each row is serialised to JSON before being sent to the assistant. The model used is set by the responses_model function. The default model is gpt-4o-mini.

Parameters:

Name Type Description Default
instructions str

System prompt for the assistant.

required
response_format Type[T]

Desired Python type of the responses. Defaults to str.

str
batch_size int

Number of requests sent in one batch. Defaults to 128.

128
temperature float

Sampling temperature. Defaults to 0.0.

0.0
top_p float

Nucleus sampling parameter. Defaults to 1.0.

1.0
max_concurrency int

Maximum number of concurrent requests. Defaults to 8.

8

Returns:

Type Description
Series

pandas.Series: Responses aligned with the DataFrame’s original index.

Note

This is an asynchronous method and must be awaited.

Source code in src/openaivec/pandas_ext.py
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
async def responses(
    self,
    instructions: str,
    response_format: Type[T] = str,
    batch_size: int = 128,
    temperature: float = 0.0,
    top_p: float = 1.0,
    max_concurrency: int = 8,
) -> pd.Series:
    """Generate a response for each row after serialising it to JSON (asynchronously).

    Example:
        ```python
        df = pd.DataFrame([
            {\"name\": \"cat\", \"legs\": 4},
            {\"name\": \"dog\", \"legs\": 4},
            {\"name\": \"elephant\", \"legs\": 4},
        ])
        # Must be awaited
        results = await df.aio.responses(\"what is the animal\'s name?\")
        ```
        This method returns a Series of strings, each containing the
        assistant's response to the corresponding input.
        Each row is serialised to JSON before being sent to the assistant.
        The model used is set by the `responses_model` function.
        The default model is `gpt-4o-mini`.

    Args:
        instructions (str): System prompt for the assistant.
        response_format (Type[T], optional): Desired Python type of the
            responses. Defaults to ``str``.
        batch_size (int, optional): Number of requests sent in one batch.
            Defaults to ``128``.
        temperature (float, optional): Sampling temperature. Defaults to ``0.0``.
        top_p (float, optional): Nucleus sampling parameter. Defaults to ``1.0``.
        max_concurrency (int, optional): Maximum number of concurrent
            requests. Defaults to ``8``.

    Returns:
        pandas.Series: Responses aligned with the DataFrame’s original index.

    Note:
        This is an asynchronous method and must be awaited.
    """
    series_of_json = self._obj.pipe(
        lambda df: (
            pd.Series(df.to_dict(orient="records"), index=df.index, name="record").map(
                lambda x: json.dumps(x, ensure_ascii=False)
            )
        )
    )
    # Await the call to the async Series method using .aio
    return await series_of_json.aio.responses(
        instructions=instructions,
        response_format=response_format,
        batch_size=batch_size,
        temperature=temperature,
        top_p=top_p,
        max_concurrency=max_concurrency,
    )

AsyncOpenAIVecSeriesAccessor

pandas Series accessor (.aio) that adds OpenAI helpers.

Source code in src/openaivec/pandas_ext.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
@pd.api.extensions.register_series_accessor("aio")
class AsyncOpenAIVecSeriesAccessor:
    """pandas Series accessor (``.aio``) that adds OpenAI helpers."""

    def __init__(self, series_obj: pd.Series):
        self._obj = series_obj

    async def responses(
        self,
        instructions: str,
        response_format: Type[T] = str,
        batch_size: int = 128,
        temperature: float = 0.0,
        top_p: float = 1.0,
        max_concurrency: int = 8,
    ) -> pd.Series:
        """Call an LLM once for every Series element (asynchronously).

        Example:
            ```python
            animals = pd.Series(["cat", "dog", "elephant"])
            # Must be awaited
            results = await animals.aio.responses("translate to French")
            ```
            This method returns a Series of strings, each containing the
            assistant's response to the corresponding input.
            The model used is set by the `responses_model` function.
            The default model is `gpt-4o-mini`.

        Args:
            instructions (str): System prompt prepended to every user message.
            response_format (Type[T], optional): Pydantic model or built‑in
                type the assistant should return. Defaults to ``str``.
            batch_size (int, optional): Number of prompts grouped into a single
                request. Defaults to ``128``.
            temperature (float, optional): Sampling temperature. Defaults to ``0.0``.
            top_p (float, optional): Nucleus sampling parameter. Defaults to ``1.0``.
            max_concurrency (int, optional): Maximum number of concurrent
                requests. Defaults to ``8``.

        Returns:
            pandas.Series: Series whose values are instances of ``response_format``.

        Note:
            This is an asynchronous method and must be awaited.
        """
        client: AsyncBatchResponses = AsyncBatchResponses(
            client=_get_async_openai_client(),
            model_name=_RESPONSES_MODEL_NAME,
            system_message=instructions,
            response_format=response_format,
            temperature=temperature,
            top_p=top_p,
            max_concurrency=max_concurrency,
        )

        # Await the async operation
        results = await client.parse(self._obj.tolist(), batch_size=batch_size)

        return pd.Series(
            results,
            index=self._obj.index,
            name=self._obj.name,
        )

    async def embeddings(self, batch_size: int = 128, max_concurrency: int = 8) -> pd.Series:
        """Compute OpenAI embeddings for every Series element (asynchronously).

        Example:
            ```python
            animals = pd.Series(["cat", "dog", "elephant"])
            # Must be awaited
            embeddings = await animals.aio.embeddings()
            ```
            This method returns a Series of numpy arrays, each containing the
            embedding vector for the corresponding input.
            The embedding model is set by the `embeddings_model` function.
            The default embedding model is `text-embedding-3-small`.

        Args:
            batch_size (int, optional): Number of inputs grouped into a
                single request. Defaults to ``128``.
            max_concurrency (int, optional): Maximum number of concurrent
                requests. Defaults to ``8``.

        Returns:
            pandas.Series: Series whose values are ``np.ndarray`` objects
                (dtype ``float32``).

        Note:
            This is an asynchronous method and must be awaited.
        """
        client: AsyncBatchEmbeddings = AsyncBatchEmbeddings(
            client=_get_async_openai_client(),
            model_name=_EMBEDDINGS_MODEL_NAME,
            max_concurrency=max_concurrency,
        )

        # Await the async operation
        results = await client.create(self._obj.tolist(), batch_size=batch_size)

        return pd.Series(
            results,
            index=self._obj.index,
            name=self._obj.name,
        )

embeddings(batch_size=128, max_concurrency=8) async

Compute OpenAI embeddings for every Series element (asynchronously).

Example

animals = pd.Series(["cat", "dog", "elephant"])
# Must be awaited
embeddings = await animals.aio.embeddings()
This method returns a Series of numpy arrays, each containing the embedding vector for the corresponding input. The embedding model is set by the embeddings_model function. The default embedding model is text-embedding-3-small.

Parameters:

Name Type Description Default
batch_size int

Number of inputs grouped into a single request. Defaults to 128.

128
max_concurrency int

Maximum number of concurrent requests. Defaults to 8.

8

Returns:

Type Description
Series

pandas.Series: Series whose values are np.ndarray objects (dtype float32).

Note

This is an asynchronous method and must be awaited.

Source code in src/openaivec/pandas_ext.py
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
async def embeddings(self, batch_size: int = 128, max_concurrency: int = 8) -> pd.Series:
    """Compute OpenAI embeddings for every Series element (asynchronously).

    Example:
        ```python
        animals = pd.Series(["cat", "dog", "elephant"])
        # Must be awaited
        embeddings = await animals.aio.embeddings()
        ```
        This method returns a Series of numpy arrays, each containing the
        embedding vector for the corresponding input.
        The embedding model is set by the `embeddings_model` function.
        The default embedding model is `text-embedding-3-small`.

    Args:
        batch_size (int, optional): Number of inputs grouped into a
            single request. Defaults to ``128``.
        max_concurrency (int, optional): Maximum number of concurrent
            requests. Defaults to ``8``.

    Returns:
        pandas.Series: Series whose values are ``np.ndarray`` objects
            (dtype ``float32``).

    Note:
        This is an asynchronous method and must be awaited.
    """
    client: AsyncBatchEmbeddings = AsyncBatchEmbeddings(
        client=_get_async_openai_client(),
        model_name=_EMBEDDINGS_MODEL_NAME,
        max_concurrency=max_concurrency,
    )

    # Await the async operation
    results = await client.create(self._obj.tolist(), batch_size=batch_size)

    return pd.Series(
        results,
        index=self._obj.index,
        name=self._obj.name,
    )

responses(instructions, response_format=str, batch_size=128, temperature=0.0, top_p=1.0, max_concurrency=8) async

Call an LLM once for every Series element (asynchronously).

Example

animals = pd.Series(["cat", "dog", "elephant"])
# Must be awaited
results = await animals.aio.responses("translate to French")
This method returns a Series of strings, each containing the assistant's response to the corresponding input. The model used is set by the responses_model function. The default model is gpt-4o-mini.

Parameters:

Name Type Description Default
instructions str

System prompt prepended to every user message.

required
response_format Type[T]

Pydantic model or built‑in type the assistant should return. Defaults to str.

str
batch_size int

Number of prompts grouped into a single request. Defaults to 128.

128
temperature float

Sampling temperature. Defaults to 0.0.

0.0
top_p float

Nucleus sampling parameter. Defaults to 1.0.

1.0
max_concurrency int

Maximum number of concurrent requests. Defaults to 8.

8

Returns:

Type Description
Series

pandas.Series: Series whose values are instances of response_format.

Note

This is an asynchronous method and must be awaited.

Source code in src/openaivec/pandas_ext.py
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
async def responses(
    self,
    instructions: str,
    response_format: Type[T] = str,
    batch_size: int = 128,
    temperature: float = 0.0,
    top_p: float = 1.0,
    max_concurrency: int = 8,
) -> pd.Series:
    """Call an LLM once for every Series element (asynchronously).

    Example:
        ```python
        animals = pd.Series(["cat", "dog", "elephant"])
        # Must be awaited
        results = await animals.aio.responses("translate to French")
        ```
        This method returns a Series of strings, each containing the
        assistant's response to the corresponding input.
        The model used is set by the `responses_model` function.
        The default model is `gpt-4o-mini`.

    Args:
        instructions (str): System prompt prepended to every user message.
        response_format (Type[T], optional): Pydantic model or built‑in
            type the assistant should return. Defaults to ``str``.
        batch_size (int, optional): Number of prompts grouped into a single
            request. Defaults to ``128``.
        temperature (float, optional): Sampling temperature. Defaults to ``0.0``.
        top_p (float, optional): Nucleus sampling parameter. Defaults to ``1.0``.
        max_concurrency (int, optional): Maximum number of concurrent
            requests. Defaults to ``8``.

    Returns:
        pandas.Series: Series whose values are instances of ``response_format``.

    Note:
        This is an asynchronous method and must be awaited.
    """
    client: AsyncBatchResponses = AsyncBatchResponses(
        client=_get_async_openai_client(),
        model_name=_RESPONSES_MODEL_NAME,
        system_message=instructions,
        response_format=response_format,
        temperature=temperature,
        top_p=top_p,
        max_concurrency=max_concurrency,
    )

    # Await the async operation
    results = await client.parse(self._obj.tolist(), batch_size=batch_size)

    return pd.Series(
        results,
        index=self._obj.index,
        name=self._obj.name,
    )

OpenAIVecDataFrameAccessor

pandas DataFrame accessor (.ai) that adds OpenAI helpers.

Source code in src/openaivec/pandas_ext.py
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
@pd.api.extensions.register_dataframe_accessor("ai")
class OpenAIVecDataFrameAccessor:
    """pandas DataFrame accessor (``.ai``) that adds OpenAI helpers."""

    def __init__(self, df_obj: pd.DataFrame):
        self._obj = df_obj

    def extract(self, column: str) -> pd.DataFrame:
        """Flatten one column of Pydantic models/dicts into top‑level columns.

        Example:
            ```python
            df = pd.DataFrame([
                {"animal": {"name": "cat", "legs": 4}},
                {"animal": {"name": "dog", "legs": 4}},
                {"animal": {"name": "elephant", "legs": 4}},
            ])
            df.ai.extract("animal")
            ```
            This method returns a DataFrame with the same index as the original,
            where each column corresponds to a key in the dictionaries.
            The source column is dropped.

        Args:
            column (str): Column to expand.

        Returns:
            pandas.DataFrame: Original DataFrame with the extracted columns; the source column is dropped.
        """
        if column not in self._obj.columns:
            raise ValueError(f"Column '{column}' does not exist in the DataFrame.")

        return (
            self._obj.pipe(lambda df: df.reset_index(drop=True))
            .pipe(lambda df: df.join(df[column].ai.extract()))
            .pipe(lambda df: df.set_index(self._obj.index))
            .pipe(lambda df: df.drop(columns=[column], axis=1))
        )

    def responses(
        self,
        instructions: str,
        response_format: Type[T] = str,
        batch_size: int = 128,
        temperature: float = 0.0,
        top_p: float = 1.0,
    ) -> pd.Series:
        """Generate a response for each row after serialising it to JSON.

        Example:
            ```python
            df = pd.DataFrame([
                {"name": "cat", "legs": 4},
                {"name": "dog", "legs": 4},
                {"name": "elephant", "legs": 4},
            ])
            df.ai.responses("what is the animal's name?")
            ```
            This method returns a Series of strings, each containing the
            assistant's response to the corresponding input.
            Each row is serialised to JSON before being sent to the assistant.
            The model used is set by the `responses_model` function.
            The default model is `gpt-4o-mini`.

        Args:
            instructions (str): System prompt for the assistant.
            response_format (Type[T], optional): Desired Python type of the
                responses. Defaults to ``str``.
            batch_size (int, optional): Number of requests sent in one batch.
                Defaults to ``128``.
            temperature (float, optional): Sampling temperature. Defaults to ``0.0``.
            top_p (float, optional): Nucleus sampling parameter. Defaults to ``1.0``.

        Returns:
            pandas.Series: Responses aligned with the DataFrame’s original index.
        """
        return self._obj.pipe(
            lambda df: (
                df.pipe(lambda df: pd.Series(df.to_dict(orient="records"), index=df.index, name="record"))
                .map(lambda x: json.dumps(x, ensure_ascii=False))
                .ai.responses(
                    instructions=instructions,
                    response_format=response_format,
                    batch_size=batch_size,
                    temperature=temperature,
                    top_p=top_p,
                )
            )
        )

    def similarity(self, col1: str, col2: str) -> pd.Series:
        return self._obj.apply(
            lambda row: np.dot(row[col1], row[col2]) / (np.linalg.norm(row[col1]) * np.linalg.norm(row[col2])),
            axis=1,
        ).rename("similarity")

extract(column)

Flatten one column of Pydantic models/dicts into top‑level columns.

Example

df = pd.DataFrame([
    {"animal": {"name": "cat", "legs": 4}},
    {"animal": {"name": "dog", "legs": 4}},
    {"animal": {"name": "elephant", "legs": 4}},
])
df.ai.extract("animal")
This method returns a DataFrame with the same index as the original, where each column corresponds to a key in the dictionaries. The source column is dropped.

Parameters:

Name Type Description Default
column str

Column to expand.

required

Returns:

Type Description
DataFrame

pandas.DataFrame: Original DataFrame with the extracted columns; the source column is dropped.

Source code in src/openaivec/pandas_ext.py
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
def extract(self, column: str) -> pd.DataFrame:
    """Flatten one column of Pydantic models/dicts into top‑level columns.

    Example:
        ```python
        df = pd.DataFrame([
            {"animal": {"name": "cat", "legs": 4}},
            {"animal": {"name": "dog", "legs": 4}},
            {"animal": {"name": "elephant", "legs": 4}},
        ])
        df.ai.extract("animal")
        ```
        This method returns a DataFrame with the same index as the original,
        where each column corresponds to a key in the dictionaries.
        The source column is dropped.

    Args:
        column (str): Column to expand.

    Returns:
        pandas.DataFrame: Original DataFrame with the extracted columns; the source column is dropped.
    """
    if column not in self._obj.columns:
        raise ValueError(f"Column '{column}' does not exist in the DataFrame.")

    return (
        self._obj.pipe(lambda df: df.reset_index(drop=True))
        .pipe(lambda df: df.join(df[column].ai.extract()))
        .pipe(lambda df: df.set_index(self._obj.index))
        .pipe(lambda df: df.drop(columns=[column], axis=1))
    )

responses(instructions, response_format=str, batch_size=128, temperature=0.0, top_p=1.0)

Generate a response for each row after serialising it to JSON.

Example

df = pd.DataFrame([
    {"name": "cat", "legs": 4},
    {"name": "dog", "legs": 4},
    {"name": "elephant", "legs": 4},
])
df.ai.responses("what is the animal's name?")
This method returns a Series of strings, each containing the assistant's response to the corresponding input. Each row is serialised to JSON before being sent to the assistant. The model used is set by the responses_model function. The default model is gpt-4o-mini.

Parameters:

Name Type Description Default
instructions str

System prompt for the assistant.

required
response_format Type[T]

Desired Python type of the responses. Defaults to str.

str
batch_size int

Number of requests sent in one batch. Defaults to 128.

128
temperature float

Sampling temperature. Defaults to 0.0.

0.0
top_p float

Nucleus sampling parameter. Defaults to 1.0.

1.0

Returns:

Type Description
Series

pandas.Series: Responses aligned with the DataFrame’s original index.

Source code in src/openaivec/pandas_ext.py
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
def responses(
    self,
    instructions: str,
    response_format: Type[T] = str,
    batch_size: int = 128,
    temperature: float = 0.0,
    top_p: float = 1.0,
) -> pd.Series:
    """Generate a response for each row after serialising it to JSON.

    Example:
        ```python
        df = pd.DataFrame([
            {"name": "cat", "legs": 4},
            {"name": "dog", "legs": 4},
            {"name": "elephant", "legs": 4},
        ])
        df.ai.responses("what is the animal's name?")
        ```
        This method returns a Series of strings, each containing the
        assistant's response to the corresponding input.
        Each row is serialised to JSON before being sent to the assistant.
        The model used is set by the `responses_model` function.
        The default model is `gpt-4o-mini`.

    Args:
        instructions (str): System prompt for the assistant.
        response_format (Type[T], optional): Desired Python type of the
            responses. Defaults to ``str``.
        batch_size (int, optional): Number of requests sent in one batch.
            Defaults to ``128``.
        temperature (float, optional): Sampling temperature. Defaults to ``0.0``.
        top_p (float, optional): Nucleus sampling parameter. Defaults to ``1.0``.

    Returns:
        pandas.Series: Responses aligned with the DataFrame’s original index.
    """
    return self._obj.pipe(
        lambda df: (
            df.pipe(lambda df: pd.Series(df.to_dict(orient="records"), index=df.index, name="record"))
            .map(lambda x: json.dumps(x, ensure_ascii=False))
            .ai.responses(
                instructions=instructions,
                response_format=response_format,
                batch_size=batch_size,
                temperature=temperature,
                top_p=top_p,
            )
        )
    )

OpenAIVecSeriesAccessor

pandas Series accessor (.ai) that adds OpenAI helpers.

Source code in src/openaivec/pandas_ext.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
@pd.api.extensions.register_series_accessor("ai")
class OpenAIVecSeriesAccessor:
    """pandas Series accessor (``.ai``) that adds OpenAI helpers."""

    def __init__(self, series_obj: pd.Series):
        self._obj = series_obj

    def responses(
        self,
        instructions: str,
        response_format: Type[T] = str,
        batch_size: int = 128,
        temperature: float = 0.0,
        top_p: float = 1.0,
    ) -> pd.Series:
        """Call an LLM once for every Series element.

        Example:
            ```python
            animals = pd.Series(["cat", "dog", "elephant"])
            animals.ai.responses("translate to French")
            ```
            This method returns a Series of strings, each containing the
            assistant's response to the corresponding input.
            The model used is set by the `responses_model` function.
            The default model is `gpt-4o-mini`.

        Args:
            instructions (str): System prompt prepended to every user message.
            response_format (Type[T], optional): Pydantic model or built‑in
                type the assistant should return. Defaults to ``str``.
            batch_size (int, optional): Number of prompts grouped into a single
                request. Defaults to ``128``.
            temperature (float, optional): Sampling temperature. Defaults to ``0.0``.
            top_p (float, optional): Nucleus sampling parameter. Defaults to ``1.0``.

        Returns:
            pandas.Series: Series whose values are instances of ``response_format``.
        """
        client: BatchResponses = BatchResponses(
            client=_get_openai_client(),
            model_name=_RESPONSES_MODEL_NAME,
            system_message=instructions,
            response_format=response_format,
            temperature=temperature,
            top_p=top_p,
        )

        return pd.Series(
            client.parse(self._obj.tolist(), batch_size=batch_size),
            index=self._obj.index,
            name=self._obj.name,
        )

    def embeddings(self, batch_size: int = 128) -> pd.Series:
        """Compute OpenAI embeddings for every Series element.

        Example:
            ```python
            animals = pd.Series(["cat", "dog", "elephant"])
            animals.ai.embeddings()
            ```
            This method returns a Series of numpy arrays, each containing the
            embedding vector for the corresponding input.
            The embedding model is set by the `embeddings_model` function.
            The default embedding model is `text-embedding-3-small`.

        Args:
            batch_size (int, optional): Number of inputs grouped into a
                single request. Defaults to ``128``.

        Returns:
            pandas.Series: Series whose values are ``np.ndarray`` objects
                (dtype ``float32``).
        """
        client: BatchEmbeddings = BatchEmbeddings(
            client=_get_openai_client(),
            model_name=_EMBEDDINGS_MODEL_NAME,
        )

        return pd.Series(
            client.create(self._obj.tolist(), batch_size=batch_size),
            index=self._obj.index,
            name=self._obj.name,
        )

    def count_tokens(self) -> pd.Series:
        """Count `tiktoken` tokens per row.

        Example:
            ```python
            animals = pd.Series(["cat", "dog", "elephant"])
            animals.ai.count_tokens()
            ```
            This method uses the `tiktoken` library to count tokens based on the
            model name set by `responses_model`.

        Returns:
            pandas.Series: Token counts for each element.
        """
        return self._obj.map(_TIKTOKEN_ENCODING.encode).map(len).rename("num_tokens")

    def extract(self) -> pd.DataFrame:
        """Expand a Series of Pydantic models/dicts into columns.

        Example:
            ```python
            animals = pd.Series([
                {"name": "cat", "legs": 4},
                {"name": "dog", "legs": 4},
                {"name": "elephant", "legs": 4},
            ])
            animals.ai.extract()
            ```
            This method returns a DataFrame with the same index as the Series,
            where each column corresponds to a key in the dictionaries.
            If the Series has a name, extracted columns are prefixed with it.

        Returns:
            pandas.DataFrame: Expanded representation.
        """
        extracted = pd.DataFrame(
            self._obj.map(lambda x: _extract_value(x, self._obj.name)).tolist(),
            index=self._obj.index,
        )

        if self._obj.name:
            # If the Series has a name and all elements are dict or BaseModel, use it as the prefix for the columns
            extracted.columns = [f"{self._obj.name}_{col}" for col in extracted.columns]
        return extracted

count_tokens()

Count tiktoken tokens per row.

Example

animals = pd.Series(["cat", "dog", "elephant"])
animals.ai.count_tokens()
This method uses the tiktoken library to count tokens based on the model name set by responses_model.

Returns:

Type Description
Series

pandas.Series: Token counts for each element.

Source code in src/openaivec/pandas_ext.py
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
def count_tokens(self) -> pd.Series:
    """Count `tiktoken` tokens per row.

    Example:
        ```python
        animals = pd.Series(["cat", "dog", "elephant"])
        animals.ai.count_tokens()
        ```
        This method uses the `tiktoken` library to count tokens based on the
        model name set by `responses_model`.

    Returns:
        pandas.Series: Token counts for each element.
    """
    return self._obj.map(_TIKTOKEN_ENCODING.encode).map(len).rename("num_tokens")

embeddings(batch_size=128)

Compute OpenAI embeddings for every Series element.

Example

animals = pd.Series(["cat", "dog", "elephant"])
animals.ai.embeddings()
This method returns a Series of numpy arrays, each containing the embedding vector for the corresponding input. The embedding model is set by the embeddings_model function. The default embedding model is text-embedding-3-small.

Parameters:

Name Type Description Default
batch_size int

Number of inputs grouped into a single request. Defaults to 128.

128

Returns:

Type Description
Series

pandas.Series: Series whose values are np.ndarray objects (dtype float32).

Source code in src/openaivec/pandas_ext.py
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
def embeddings(self, batch_size: int = 128) -> pd.Series:
    """Compute OpenAI embeddings for every Series element.

    Example:
        ```python
        animals = pd.Series(["cat", "dog", "elephant"])
        animals.ai.embeddings()
        ```
        This method returns a Series of numpy arrays, each containing the
        embedding vector for the corresponding input.
        The embedding model is set by the `embeddings_model` function.
        The default embedding model is `text-embedding-3-small`.

    Args:
        batch_size (int, optional): Number of inputs grouped into a
            single request. Defaults to ``128``.

    Returns:
        pandas.Series: Series whose values are ``np.ndarray`` objects
            (dtype ``float32``).
    """
    client: BatchEmbeddings = BatchEmbeddings(
        client=_get_openai_client(),
        model_name=_EMBEDDINGS_MODEL_NAME,
    )

    return pd.Series(
        client.create(self._obj.tolist(), batch_size=batch_size),
        index=self._obj.index,
        name=self._obj.name,
    )

extract()

Expand a Series of Pydantic models/dicts into columns.

Example

animals = pd.Series([
    {"name": "cat", "legs": 4},
    {"name": "dog", "legs": 4},
    {"name": "elephant", "legs": 4},
])
animals.ai.extract()
This method returns a DataFrame with the same index as the Series, where each column corresponds to a key in the dictionaries. If the Series has a name, extracted columns are prefixed with it.

Returns:

Type Description
DataFrame

pandas.DataFrame: Expanded representation.

Source code in src/openaivec/pandas_ext.py
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
def extract(self) -> pd.DataFrame:
    """Expand a Series of Pydantic models/dicts into columns.

    Example:
        ```python
        animals = pd.Series([
            {"name": "cat", "legs": 4},
            {"name": "dog", "legs": 4},
            {"name": "elephant", "legs": 4},
        ])
        animals.ai.extract()
        ```
        This method returns a DataFrame with the same index as the Series,
        where each column corresponds to a key in the dictionaries.
        If the Series has a name, extracted columns are prefixed with it.

    Returns:
        pandas.DataFrame: Expanded representation.
    """
    extracted = pd.DataFrame(
        self._obj.map(lambda x: _extract_value(x, self._obj.name)).tolist(),
        index=self._obj.index,
    )

    if self._obj.name:
        # If the Series has a name and all elements are dict or BaseModel, use it as the prefix for the columns
        extracted.columns = [f"{self._obj.name}_{col}" for col in extracted.columns]
    return extracted

responses(instructions, response_format=str, batch_size=128, temperature=0.0, top_p=1.0)

Call an LLM once for every Series element.

Example

animals = pd.Series(["cat", "dog", "elephant"])
animals.ai.responses("translate to French")
This method returns a Series of strings, each containing the assistant's response to the corresponding input. The model used is set by the responses_model function. The default model is gpt-4o-mini.

Parameters:

Name Type Description Default
instructions str

System prompt prepended to every user message.

required
response_format Type[T]

Pydantic model or built‑in type the assistant should return. Defaults to str.

str
batch_size int

Number of prompts grouped into a single request. Defaults to 128.

128
temperature float

Sampling temperature. Defaults to 0.0.

0.0
top_p float

Nucleus sampling parameter. Defaults to 1.0.

1.0

Returns:

Type Description
Series

pandas.Series: Series whose values are instances of response_format.

Source code in src/openaivec/pandas_ext.py
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
def responses(
    self,
    instructions: str,
    response_format: Type[T] = str,
    batch_size: int = 128,
    temperature: float = 0.0,
    top_p: float = 1.0,
) -> pd.Series:
    """Call an LLM once for every Series element.

    Example:
        ```python
        animals = pd.Series(["cat", "dog", "elephant"])
        animals.ai.responses("translate to French")
        ```
        This method returns a Series of strings, each containing the
        assistant's response to the corresponding input.
        The model used is set by the `responses_model` function.
        The default model is `gpt-4o-mini`.

    Args:
        instructions (str): System prompt prepended to every user message.
        response_format (Type[T], optional): Pydantic model or built‑in
            type the assistant should return. Defaults to ``str``.
        batch_size (int, optional): Number of prompts grouped into a single
            request. Defaults to ``128``.
        temperature (float, optional): Sampling temperature. Defaults to ``0.0``.
        top_p (float, optional): Nucleus sampling parameter. Defaults to ``1.0``.

    Returns:
        pandas.Series: Series whose values are instances of ``response_format``.
    """
    client: BatchResponses = BatchResponses(
        client=_get_openai_client(),
        model_name=_RESPONSES_MODEL_NAME,
        system_message=instructions,
        response_format=response_format,
        temperature=temperature,
        top_p=top_p,
    )

    return pd.Series(
        client.parse(self._obj.tolist(), batch_size=batch_size),
        index=self._obj.index,
        name=self._obj.name,
    )

embeddings_model(name)

Override the model used for text embeddings.

Parameters:

Name Type Description Default
name str

Embedding model name, e.g. text-embedding-3-small.

required
Source code in src/openaivec/pandas_ext.py
155
156
157
158
159
160
161
162
def embeddings_model(name: str) -> None:
    """Override the model used for text embeddings.

    Args:
        name (str): Embedding model name, e.g. ``text-embedding-3-small``.
    """
    global _EMBEDDINGS_MODEL_NAME
    _EMBEDDINGS_MODEL_NAME = name

responses_model(name)

Override the model used for text responses.

Parameters:

Name Type Description Default
name str

Model name as listed in the OpenAI API (for example, gpt-4o-mini).

required
Source code in src/openaivec/pandas_ext.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def responses_model(name: str) -> None:
    """Override the model used for text responses.

    Args:
        name (str): Model name as listed in the OpenAI API
            (for example, ``gpt-4o-mini``).
    """
    global _RESPONSES_MODEL_NAME, _TIKTOKEN_ENCODING
    _RESPONSES_MODEL_NAME = name

    try:
        _TIKTOKEN_ENCODING = tiktoken.encoding_for_model(name)

    except KeyError:
        _LOGGER.info(
            "The model name '%s' is not supported by tiktoken. Instead, using the 'o200k_base' encoding.",
            name,
        )
        _TIKTOKEN_ENCODING = tiktoken.get_encoding("o200k_base")

use(client)

Register a custom OpenAI‑compatible client.

Parameters:

Name Type Description Default
client OpenAI

A pre‑configured openai.OpenAI or openai.AzureOpenAI instance. The same instance is reused by every helper in this module.

required
Source code in src/openaivec/pandas_ext.py
76
77
78
79
80
81
82
83
84
85
def use(client: OpenAI) -> None:
    """Register a custom OpenAI‑compatible client.

    Args:
        client (OpenAI): A pre‑configured `openai.OpenAI` or
            `openai.AzureOpenAI` instance.
            The same instance is reused by every helper in this module.
    """
    global _CLIENT
    _CLIENT = client

use_async(client)

Register a custom asynchronous OpenAI‑compatible client.

Parameters:

Name Type Description Default
client AsyncOpenAI

A pre‑configured openai.AsyncOpenAI or openai.AsyncAzureOpenAI instance. The same instance is reused by every helper in this module.

required
Source code in src/openaivec/pandas_ext.py
88
89
90
91
92
93
94
95
96
97
def use_async(client: AsyncOpenAI) -> None:
    """Register a custom asynchronous OpenAI‑compatible client.

    Args:
        client (AsyncOpenAI): A pre‑configured `openai.AsyncOpenAI` or
            `openai.AsyncAzureOpenAI` instance.
            The same instance is reused by every helper in this module.
    """
    global _ASYNC_CLIENT
    _ASYNC_CLIENT = client

use_azure_openai(api_key, endpoint, api_version)

Create and register an openai.AzureOpenAI client.

Parameters:

Name Type Description Default
api_key str

Azure OpenAI subscription key.

required
endpoint str

Resource endpoint, e.g. https://<resource>.openai.azure.com.

required
api_version str

REST API version such as 2024‑02‑15-preview.

required
Source code in src/openaivec/pandas_ext.py
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def use_azure_openai(api_key: str, endpoint: str, api_version: str) -> None:
    """Create and register an `openai.AzureOpenAI` client.

    Args:
        api_key (str): Azure OpenAI subscription key.
        endpoint (str): Resource endpoint, e.g.
            ``https://<resource>.openai.azure.com``.
        api_version (str): REST API version such as ``2024‑02‑15-preview``.
    """
    global _CLIENT, _ASYNC_CLIENT
    _CLIENT = AzureOpenAI(
        api_key=api_key,
        azure_endpoint=endpoint,
        api_version=api_version,
    )
    _ASYNC_CLIENT = AsyncAzureOpenAI(
        api_key=api_key,
        azure_endpoint=endpoint,
        api_version=api_version,
    )

use_openai(api_key)

Create and register a default openai.OpenAI client.

Parameters:

Name Type Description Default
api_key str

Value forwarded to the api_key parameter of openai.OpenAI.

required
Source code in src/openaivec/pandas_ext.py
100
101
102
103
104
105
106
107
108
109
def use_openai(api_key: str) -> None:
    """Create and register a default `openai.OpenAI` client.

    Args:
        api_key (str): Value forwarded to the ``api_key`` parameter of
            `openai.OpenAI`.
    """
    global _CLIENT, _ASYNC_CLIENT
    _CLIENT = OpenAI(api_key=api_key)
    _ASYNC_CLIENT = AsyncOpenAI(api_key=api_key)